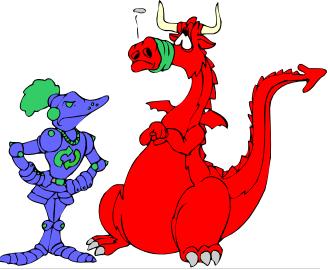

What are Dr. Seuss's favorite air pollutants?

 NO_x and SO_x

NO_x and Ambient Air Chemistry as it relates to the New NO₂ 1-Hour Standard


Jill Hecht, Williams Midstream

Mark J. Bareta, Williams Midstream

NO₂ 1-Hour Standard

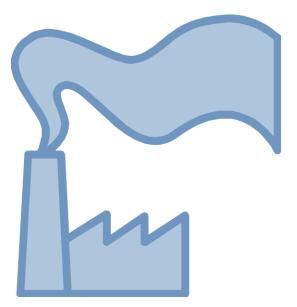
- > EPA recently revised the primary NAAQS (National Ambient Air Quality Standards) to include a 100 ppb averaged hourly standard
 - More stringent, more complicated standard
 - More modeling required and more difficult to prove compliance
- > New and existing sources are required to show that they do not cause a significant contribution to a violation of NAAQS


NO_x Introduction

> Nitrogen Oxides (NO_x) are a family of gases formed during combustion and include:

$$\begin{array}{cccc} \mathsf{NO} & \mathsf{NO}_2 & \mathsf{N}_2\mathsf{O} & \mathsf{NO}_3 \\ & \mathsf{N}_2\mathsf{O}_3 & \mathsf{N}_2\mathsf{O}_4 & \mathsf{N}_2\mathsf{O}_5 \end{array}$$

- > The majority of NO_x however are in the form of NO and NO_2
- > Most NO_x combustion emissions are in the form of NO



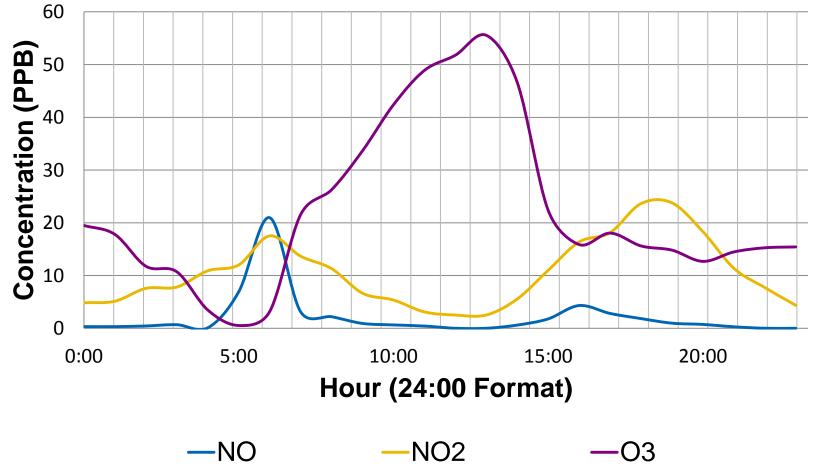
NO_x In-Stack Air Chemistry

- > Two major types of NO_x Formation
 - Primary source is thermal NO_x
 - Secondary source is fuel-bound NO_x
- > Thermal NO_x Formation

 $N_{2} + O \leftrightarrow NO + N$ $N + O_{2} \leftrightarrow NO + O$ $N + OH \leftrightarrow NO + H$ $2NO + O_{2} \leftrightarrow 2NO_{2}$

NO_x Ambient Air Chemistry

- > NO and NO₂ react with a variety of constituents in ambient air
- > Three main reactions that reside in equilibrium:


$$NO_{2} \stackrel{hv}{\leftrightarrow} NO + O \longleftarrow NO_{2} \text{ Photolysis}$$
$$O + O_{2} \leftrightarrow O_{3} \longleftarrow \text{Ozone Formation}$$
$$O_{3} + NO \leftrightarrow NO_{2} + O_{2} \longleftarrow \text{Titration}$$

> These reactions are balanced and cyclic and help to explain the changing diurnal patterns seen in ambient air quality data

Example Diurnal Pattern

Houston Aldine (Urban) June 2nd, 2010

NO_x Ambient Air Chemistry, cont'd

- > VOC's contribute significantly to ozone formation in the presence of sunlight
- > During the day, titration is balanced by photolysis, resulting in lower levels of NO and NO₂

$$O_3 + NO \leftrightarrow NO_2 + O_2$$
 $NO_2 \stackrel{hv}{\leftrightarrow} NO + O$

> Important Notes:

- NO, NO₂ and ozone ambient air ratios shift and change throughout the day
- There are *many* reactions taking place, not just titration or photolysis
- NO and NO₂ are also removed from the air during natural processes, mainly through formation of HNO₃ through direct absorption into ground, PM or cloud droplets

Additional NO_x Ambient Air Reactions²

 $ROG + O + O_3 \leftrightarrow R + RCO + RO + OH$

 $OH \cdot + NO_2 \leftrightarrow HNO_3$

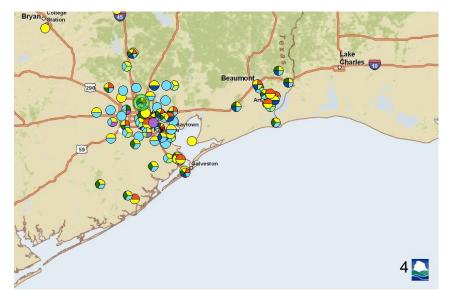
$$RO_2 \cdot + NO \rightarrow RO \cdot + NO_2$$

$$OH + CO \rightarrow H + CO_{2}$$
$$H + O_{2} \leftrightarrow HO_{2}$$
$$HO_{2} + NO \rightarrow NO_{2} + OH$$

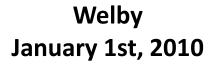
 $\begin{array}{l} \mathsf{ROG} + \mathsf{OH} \cdot \to \mathsf{R} \cdot + \mathsf{H}_2\mathsf{O} \\ & \mathsf{R} \cdot + \mathsf{O} \to \mathsf{RO}_2 \cdot \\ & \mathsf{RO}_2 \cdot + \mathsf{NO} \to \mathsf{RO} \cdot + \mathsf{NO}_2 \\ & \mathsf{RO} \cdot + \mathsf{O}_2 \to \mathsf{HO}_2 \cdot + \mathsf{RCHO} \\ & \mathsf{HO}_2 \cdot + \mathsf{NO} \to \mathsf{NO}_2 + \mathsf{OH} \cdot \end{array}$

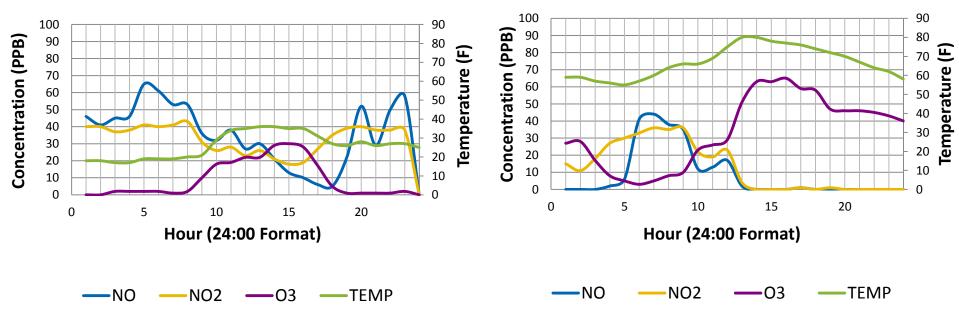
$$RO_{2} \cdot + NO_{2} \rightarrow ROONO_{2}$$

$$O_{11} O_{12} + RCOO \rightarrow RCOONO_{2}$$

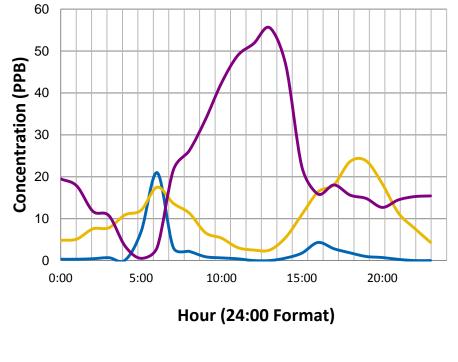

Ambient Air Quality Data Analysis

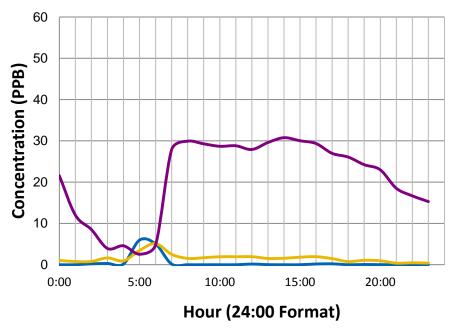
> Examination of NO/NO₂ ratios in natural ambient air


- Denver, CO Welby Ambient Monitoring Station
 - Seasonal Differences
- Houston, TX Houston Aldine and Lake Jackson Ambient Monitoring Stations
 - Urban vs. Rural Comparison



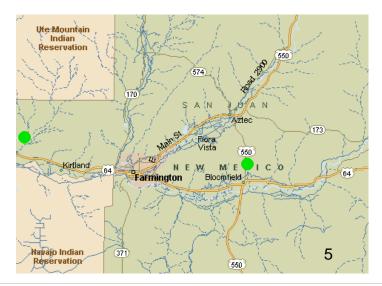
Denver Data – 2010

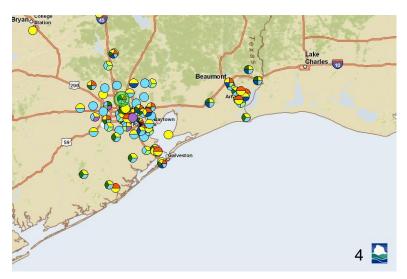

Welby June 1st, 2010


Urban vs. Rural Texas Data

Houston Aldine (Urban) June 2nd, 2010

Lake Jackson (Rural) June 2nd, 2010


-NO -NO2 -O3


-NO -NO2 -O3

Ambient NO₂/NO_x Ratios

- > Reviewed actual NO₂/NO_x ratios seen in natural ambient air monitoring data
- > Examined hourly data from three stations for NO_2/NO_x ratios
 - San Juan, New Mexico monitoring station (Jan 2010 Dec 2010)
 - Bloomfield, New Mexico monitoring station (Mar 2010 Jan 2011)
 - Houston Aldine, Texas monitoring station (Jan 2010 Dec 2010)

Summary Table

	Maximum	Minimum	Average
NO ₂ /NO _x Ratios by Area, All Data	a		
San Juan, NM	1.00	0.10	0.78
Bloomfield, NM	1.00	0.16	0.73
Houston (Aldine), TX	1.00	0.00	0.84
Pollutant Concentration by Area	a		
NO ₂ Concentration, ppb			
San Juan, NM	52	1	10.74
Bloomfield, NM	54	1	12.61
Houston (Aldine), TX	60.16	0	6.95
NO Concentration, ppb			
San Juan, NM	172	0	4.32
Bloomfield, NM	173	0	6.74
Houston (Aldine), TX	205.60	0	4.59
O ₃ Concentration, ppb			
San Juan, NM	81	0	34.30
Bloomfield, NM	77	0	24.56
Houston (Aldine), TX	127.25	0	24.95

Data Points of Note

Location	Max Ratio	Max NO ₂ ppb	Ratio	Max NO ₂ ppb
San Juan	1.00	18	0.82	52
Bloomfield	1.00	24	0.63	54
Houston Aldine	1.00	24	0.91	60

- > Data supports idea of different chemistry occurring in air
- > Data supports that you can't apply a set ratio and have it be representative of what's actually happening
- > There's even less conversion happening in a plume

NO₂/NO_x Ratio Observations

> Ambient air ratios of NO₂ and NO_x vary

- Vary with time, concentration, and atmospheric conditions
- Annual data set with great variations is not representative of short term data and hourly conditions
- Average and median ratios of 0.75 reflect annual average air chemistry
- Of note, we see *lower* ratios and less conversion when NO₂ is *higher* in concentration
- Important because EPA is assuming that there's a high and uniform conversion
 - When examining the *highest* NO2 concentrations, you should be applying *lower* conversion ratios

Comparison of Ambient Ratios to NO/NO₂ Conversion

- > High hourly conversion ratios (1.00) are most conservative but only seen when NO_x levels are very low, and hardly seen when NO₂ concentrations are above 20 ppb
- > High annual conversion ratios (0.75-1.0) are also conservative but are only truly indicative of annual average ambient conditions
- > Compliance model assumes one method of conversion; can't analyze additional reactions, including NO₂ removal processes
- > Current assumed conversion ratios ignore complexity of local factors and chemistry
- > No consistent ratio seen in ambient air quality data

Conclusion

- > Hourly ambient air chemistry is incredibly complex and cannot be accurately accounted for with simplified models and assumptions
- > Ambient air is well-mixed system in a quasi-equilibrium state where NOx chemistry is stable only over time
- > Long-term ambient conditions and ratios are not representative of shortterm plume concentrations and reactions

The purpose of the research was to raise questions regarding compliance with the new 1-hour NO_2 standard. If an intern who doesn't even have her college degree yet can find weaknesses and questionable assumptions, then maybe, just maybe, there's something that needs to be further addressed.

Thank you for your time!

> Jill Hecht
 Williams Midstream
 <u>Jill.Hecht1@Williams.com</u>

> Mark J. Bareta Williams Midstream <u>Mark.Bareta@Williams.com</u>

References

- 1. Seuss, Dr. *Fox in* Socks. ">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail&id=15B0C6284A551799BDA2C1D7D530BD50F8B834B6&first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+socks+book&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+sock&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+sock&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+sock&view=detail& first=1&FORM=IDFRIR>">http://www.bing.com/images/search?q=fox+in+sock&view=detail& first=1&FORM=IDFRIR>"
- 2. Alley, F.C. and C. David Cooper. *Air Pollution Control: A Design Approach*. 3rd Ed. Long Grove: Waveland Press, Inc., 2002.
- 3. Colorado Department of Public Health and the Environment. "Real-Time Air Monitoring Sites." *Air Pollution Control Division Technical Services Home.* ">http://www.colorado.gov/airquality/aqi_map_ags.aspx">http://www.colorado.gov/airquality/aqi_map_ags.aspx<">http://www.colorado.gov/airquality/aqi_map_ags.aspx"
- 4. Texas Commission on Environmental Quality. "GeoTAM Viewer." *GeoTAM.* http://gis3.tceq.state.tx.us/geotam/index.html?aqs=482010024>.
- 5. New Mexico Environment Department. "New Mexico Map: San Juan County." *NMED Air Monitoring Website.* ">http://air.nmenv.state.nm.us/regionMap.php?regionno=3>.
- 6. Seuss, Dr. *Dr. Seuss Sign Generator*. RedKid.net. http://www.redkid.net/generator/seuss/7.php. 2007.