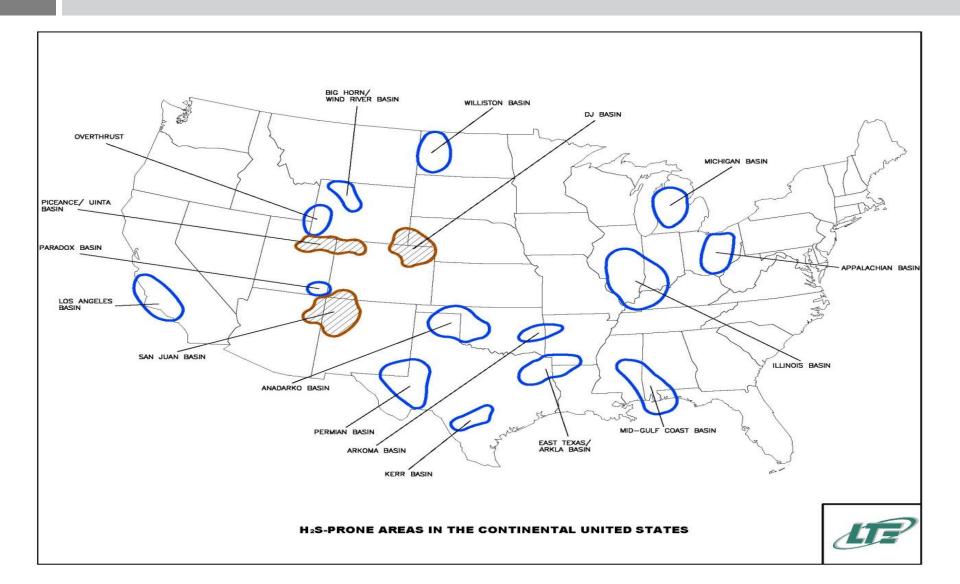
HYDROGEN SULFIDE UPDATED

Rocky Mountain EHS Peer Group 1st Quarter 2013 Meeting

Presented by LT Environmental, Inc.

- \Box Outline historic and new H₂S prone areas
- Discuss API Recommended Procedures
- Discuss BLM requirements
- Discuss State requirements
- Discuss ACGIH changes

H₂S Prone Areas


 H_2S production historically restricted to specific basins and formations

Recent advances and controls used in drilling and completion technologies seemed to be tied to new areas/formations with H_2S production

Where H_2S is found, SO_2 is also found

H₂S Prone Areas

Why does H₂S occur?

- Sulfate-reducing bacteria (SRB) converts SO₄ from cellulosic material and some hydrocarbons
- SRB uses carbon food sources that are typically found in the majority of drilling mud systems
- SRB introduced into the mud system during drilling activities, and are activated during re-use and storage of mud
- SRB introduced into the well stimulation fluids, and are activated during re-use and storage of fluids

AMERICAN PETROLEUM INSTITUTE

- Recommended Practice 49 -Recommended Practice for Drilling and Well Servicing operations Involving Hydrogen Sulfide
 - Applies to well drilling, completion, servicing, workover, downhole maintenance and plug & abandonment procedures.
 - Establishes location classifications
 - Addresses personnel training, monitoring equipment, personal protective equipment, contingency planning and emergency procedures.
 - Also establishes Sulfur Dioxide (SO₂) requirements

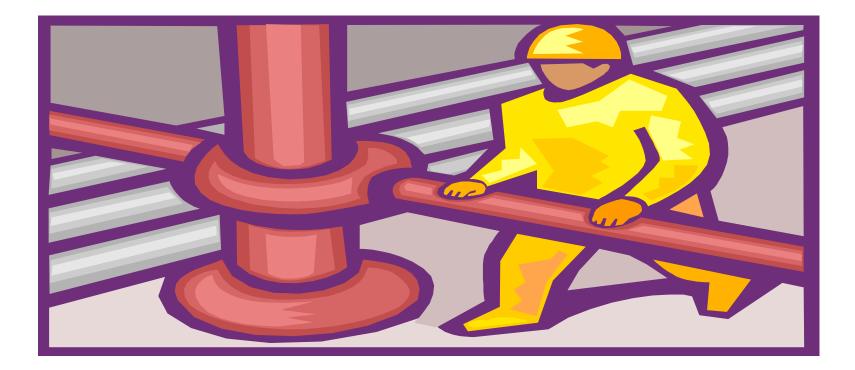
Location Classifications

- No Hazard Area
- □ Condition 1 Area low hazard □ <10 ppm H_2S
- Condition 2 Area medium hazard
 - $\square > 10$ ppm, < 20 ppm H₂S
- Condition 3 Area high hazard

 $\square > 20 \text{ ppm H}_2S$

Recommended Actions

Warning Systems


- Visual and audio dependent upon location classification
- Monitoring Equipment
 - Manufacturer certified for H₂S and SO₂
 - □ Accurate in a range from well below to well above action levels ($H_2S = 10$ ppm, $SO_2 = 2$ ppm)
 - Mixture of fixed and portable monitors as needed to protect workers
- Personnel Training
- Contingency Plans

Contingency Plan

- May be required by certain federal, state or local agencies.
- Must contain:
 - Facility specific description and maps
 - Monitoring equipment locations
 - Safety equipment locations
 - Safe breathing area locations
 - Evacuation routes
 - Training and drill requirements
 - Emergency response procedures

BUREAU OF LAND MANAGEMENT

Onshore Oil and Gas Order No. 6, Hydrogen
Sulfide Operations

Applicability

- □ All onshore Federal and Indian oil and gas leases.
- Drilling, completing, testing, reworking, producing, injecting, gathering, storing, or treating operations.
- Involving zones which are known or could reasonably be expected to contain H₂S present in concentrations equal to or greater than 100 ppm.

Requirements

- Written H₂S Drilling Operations Plan submitted with APD
- Written Public Protection Plan submitted with APD, notification of production or when radius of exposure criteria are met
- □ Training Program available for review upon request
- □ All plans and programs available at site

Radius of Exposure

- Pasquill-Gifford derived equation:
 - $X = [1.589)(H_2S \text{ concentration})(Q)]^{0.6258}$
 - X = radius of exposure
 - H_2S concentration = decimal equivalent of the volume fraction of H_2S in the gas stream
 - Q = maximum volume of gas determined to be available for escape in cubic feet per day

State Requirements

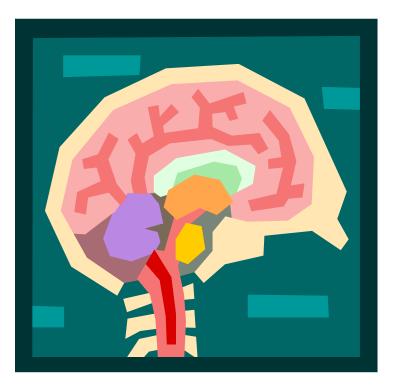
- Colorado Oil & Gas Conservation Commission Rule 607
 - An operator must file an H₂S drilling operations plan when working in geologic zones known or reasonably expected to encounter H₂S in the gas stream at concentrations at or above 100 ppm
 - Any field measurement of H₂S during oil and gas operations detected by using colorimetric tubes, hand-held personal monitors, fixed gas monitors or other field instrumentation at a concentration equal to or greater than 20 ppm shall be verified by a subsequent sampling of the source gas by laboratory gas analysis for H₂S concentration.
 - All subsequent gas analysis which report concentrations above non-detect at a subject location shall be reported to COGCC and the Local Governmental Designee (LGD)

AMERICAN CONFERENCE of GOVERNMENTAL INDUSTRIAL HYGIENISTS

- ACGIH is a private, not-for-profit, nongovernmental organization whose members are industrial hygienists or other health & safety professionals
- Composed of committees that review existing published, peer-reviewed literature to develop a conclusion on the level of exposure that workers can experience without adverse health conditions
- Threshold Limit Values (TLVs) = 8-hour time-weighted average recommendations (NOT REGULATION)

Existing Exposure Limits for H₂S

- □ OSHA ceiling (10 min)= 20 ppm
- \Box OSHA peak (10 min) = 50 ppm
- □ IDLH = 100 ppm
- \Box NIOSH ceiling (10 min) = 10 ppm
- ATSDR MRL (24 hour) = 0.07 ppm (acute), 0.03 ppm (intermediate)
- WHO community exposure limit (24 hour) = 0.003 ppm


ACGIH

 Changed the threshold limit value (TLV) and the short-term exposure limit (STEL) recommendation for H₂S in February 2010.


ACGIH

- Changes based on the potential neurological effects of prolonged exposure to H₂S published in several peer-reviewed articles
- Effects include mental capacity reduction similar to Alzheimer's Disease

ACGIH

 TLV - Revised from 10 ppm to 1 ppm
STEL - Revised from 15 ppm to 5 ppm

Problems

- Monitoring equipment
 - A Canadian Department of Governmental Services Study determined that the majority of intrinsically safe personal H2S detectors on the market are not accurate in the ppb range
 - A report issued by detector manufacturers indicated that problems will occur with false positives when alarms set below 1 ppm

Problems

- Several published standards incorporate ACGIH TLVs by reference
 - NFPA 306 Control of Gas Hazards on Vessels
 - US Coast Guard regulations (OSHA PEL or TLV, whichever is lower)
 - US Army (OSHA PEL or TLV, whichever is lower, or specific Army OEL)
 - Some individual state health and safety plans (e.g. California)
 - Many international standards and regulations (e.g. Canada)
 - Many consensus standards (e.g. ANSI, NFPA)
 - Many corporate health and safety plans
 - Mine Safety and Health Administration (MSHA) regulations

Problems

- American National Standards Institute (ANSI) committee on Hydrogen Sulfide Safety stated that they believe there is insufficient data justifying the ACGIH reduction
- Canadian Department of Governmental Services determined that inadequate study of the economic and scientific feasibility of the reduction has been performed

Contact:

LT Environmental, Inc.

4600 West 60th Ave Arvada, CO 80003 303-433-9788

Jeff Citrone, CIH, CSP, REA

jcitrone@ltenv.com 303-962-5494

Compliance, Remediation, Engineering